Three-dimensional Simulations of the Inhomogeneous Low Solar Wind

Norbert Magyar

KU Leuven FWO Postdoctoral fellow

The solar wind is inhomogeneous across **B**

• To date, all models consider a homogeneous background across the magnetic field, however there is plenty of evidence for plasma structuring in the solar corona/wind.

e.g., Comet Lovejoy, 2011, passing at ~150 Mm above the photosphere

The solar wind is inhomogeneous across **B**

4 to 10 Solar radii

Data credit: (STEREO-A) /COR2, Craig DeForest, SwRI

Bern, CH. 5th-9th Dec 2022

Inhomogeneous MHD allows for:

- Surface and global waves (e.g., surface Alfvén, kink)
- Mode coupling
- Phase mixing
- Resonant absorption
- Turbulence of unidirectionally propagating waves

Turbulent cascade of unidirectionally prop. waves

- Key takeaway: waves other than pure Alfvén waves (linear or fully nonlinear in incompressible MHD) perturb both Elsässer variables as they propagate → self-cascade of waves (Magyar et al., 2017,2019a,b).
- E.g., nonlinear wave steepening (cascade along B):

Turbulent cascade of unidirectionally propagating waves

 Transverse MHD waves owing their existence to structuring, e.g., kink waves on flux tubes or surface Alfvén waves on magnetic interfaces, nonlinearly self-cascade perpendicularly to B as they propagate – referred to as 'uniturbulence'.

Turbulent cascade of unidirectionally propagating waves

E.g., surface Alfvén waves

$$v_{ph} = \sqrt{\frac{\rho_i v_{Ai}^2 + \rho_e v_{Ae}^2}{\rho_i + \rho_e}}$$

Turbulent cascade of unidirectionally propagating waves

Nonlinear evolution: surface Alfvén wave Linear Nonlinear

Bern, CH. 5th-9th Dec 2022

Inhomogeneous 3D MHD solar wind simulation:

- Full 3D MHD
- 1 to 15 Ro
- 18° wide
- Alfvén point at 12 Ro
- Relaxed to steady inhomogen. wind
- Driver with k=1-4 at bottom bound.
- Vrms ≈ 15 km/s
- 1024x256^2

Inhomogeneous 3D MHD solar wind simulation:

- Inhomogeneous temperature (pressure) boundary condition at the coronal bottom.
- External inhomogeneous heating function
- Similar background wind solution with thermal conduction from bottom boundary.

Inhomogeneous 3D MHD solar wind simulation:

Velocity driver at the bottom adds a time and space-varying solenoidal and purely angular velocity field at selected modes, following an Ornstein-Uhlenbeck stochastic process with a finite autocorrelation time (Federrath et al. 2010).

Slice at r = 12 R_{\odot}

Energy spectra

- Perp. Energy spectra −3/2 or −5/3 ✓
- Magnetic field spectra steeper than vel.
- z⁻spectra steeper than measured

Par. energy spectra -2 🗸

Energy spectra evolution in time and with r

- Initially a 1/f spectrum due to linear phase mixing
- In the statistically steady state, it evolves towards -5/3.

Energy spectra evolution in time and with r

- The origin of the 1/f spectra of long wavelength waves in the fast solar wind is not clear.
- It could originate from long-wavelength, weakly nonlinear, phase-mixed waves which gradually cascade as they propagate outwards (Magyar et al. 2022).

5th-9th Dec 2022

Homogeneous vs. inhomogeneous turbulence

Bern, CH.

Same domain, same wave driver, no structuring

- Energy spectra in the homogeneous setup at the end of the simulated time ≈ -3
 - Cascade to smaller scales, both linear and nonlinear, much faster in the inhomogeneous setup \rightarrow uniturbulence cascade rate higher than AWT.

inhom.

Correlation between nonlinear advection, Alfvén speed gradients, radial currents

3D cross-correlation from r = 12-15 R_{\odot}

 $\nabla v_{\rm A} \star |j_r| \approx 0.23$

 $abla v_{\rm A} \star z_{\rm NL}^+ pprox 0.17$

 $\nabla v_{\rm A}$ \star $z_{NL}^- \approx 0.23$

 $|j_r|$ * $z_{NL}^+ \approx 0.47$

For comparison, Alfvénic correlation: $v_{\phi} \star b_{\phi} \approx 0.9$

Bern, CH.

Simulated PSP data acquisition

Simplified setups

- The presented simulation is too complex to clearly identify all the different mechanisms and nonlinear cascade channels at play.
- We consider now a setup with a single cylindrical plume.

5th-9th Dec 2022

Uniform linearly-polarized wave driver

Uniform linearly-polarized wave driver

Bern, CH. 5th-9^t

5th-9th Dec 2022

Uniform linearly-polarized wave driver – advanced

KU LEUVEN

Note smallscale generation throughout the plume, while Alfvén waves relatively unchanged.

INTERNATIONAL

SPACE SCIENCE INSTITUTE

Uniform linearly-polarized wave driver – advanced

• Note small-scale generation throughout the plume, while Alfvén waves relatively unchanged.

Bern, CH. 5th-9th Dec 2022

Stochastic wave driver

 Alfvén waves polarized in the same direction do not interact nonlinearly with their reflections

 run realistic
 wave driver

Stochastic wave driver

Bern, CH. 5th-9th Dec 2022

KU LEUVEN

Stochastic wave driver

 Clear correlation of strong currents and nonlinear evolution with density gradient. Alfvén waves in the outer region are also cascading... but at a slower rate.

Conclusions

- Background structuring has a strong effect on the evolution of MHD turbulence in the nascent solar wind, on faster timescales than in the perpendicularly homogeneous case.
- 1/f spectrum may be due to phase mixing of slowly cascading waves.
- Self-cascade of kink waves the dominant nonlinear cascade channel in the pristine solar wind?
- Remaining questions: heating? is the self-cascade identifiable in in-situ data?