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”This is why I love elementary school so much.

The kids really believe everything you tell them”

Principal Seymour Skinner to Mrs. Edna Crabapple

The Simpsons.

• Linear motions superimposed on a static equilibrium state.

• Displace the plasma element from ~r to ~r + ~ξ

~r → ~r + ~ξ.

• ~ξ = Lagrangian displacement.

• Changes in density, pressure and magnetic field.

• Eulerian description / Lagrangian description.

• Linearise MHD equations.



Equations for linear MHD waves

ρ′ = −∇.(ρ0~ξ),

p′ = −~ξ.∇p0 − γp0∇.~ξ,

~B′ = ∇×
(
~ξ × ~B0

)
,

ρ0
∂2~ξ

∂t2
= −∇p′ + 1

µ
(∇× ~B0)× ~B′ +

1

µ
(∇× ~B′)× ~B0

P ′ = p′ +
~B0 · ~B′
µ

• P ′ = important quantity for understanding of mixed properties of MHD

waves in non-uniform plasmas.

• Solutions of the form

f (~r; t) = f̃ (~r) exp(−iωt)

• f̃ (~r) is the time independent part of any of the perturbed quantities f .



Linear MHD waves in Cartesian geometry

• First step: Uniform plasma of infinite extent.

• Equilibrium quantities

~B0 = (0, 0, Bz), p0 = constant, ρ0 = constant.

• The coefficients of the partial differential equations in space are constants.

• Solutions in the form of plane waves

f̃ (~r) = f̂ exp(i~k.~r) = f̂ exp(i(kxx + kyy + kzz)).

• Combine the temporal and spatial factors

f (~r; t) = f̃ (~r) exp(−iωt) = f̂ exp(i(~k.~r − ωt))
= f̂ exp(i(kxx + kyy + kzz − ωt)).

• f̂= constant amplitude of f , ~k = kx~1x + ky~1y + kz~1z = the wave vector.



• ~B0 defines a preferred direction : ξz = ξ‖, (∇× ~ξ)z = (∇× ~ξ)‖.

ξz = component parallel to ~B0

∇ · ~ξ = i ~k · ~ξ = i Y = compression

(∇× ~ξ)z = i (~k × ~ξ) ·~1z = i Z = component of vorticity parallel to ~B0

• X = kzξz, Y = ~k · ~ξ, Z = (~k × ~ξ) ·~1z

ω2X − k2zv2sY = 0,

k2v2A X + (ω2 − k2(v2A + v2s ))Y = 0,

• • • • • • •
(ω2 − ω2

A)Z = 0.

• Two uncoupled subsets of equations.

• Two types of solutions.



Classic Alfvén waves

• ξz = 0, Y = 0, Z 6= 0.

ω2 = ω2
A =

(~k · ~B0)
2

µρ0
= k2z v

2
A, v2A =

B2
0

µ ρ0

• ωA = local Alfvén frequency.

• No compression, no parallel displacement; parallel vorticity.

• Restoring force = Magnetic tension force.

• No variation of total pressure P ′ = 0

• Flow of energy along ~B with velocity vA.

• Extremely an-isotropic.

• The displacement ~ξ for Alfvén waves .

~ξA = (−ky
kx
~1x +~1y)ξy = (~1x −

kx
ky
~1y)ξx.

• Popular choice ky = 0 : ~ξA = ξy~1y.

• y-independent Alfvén waves are a special case.

• ky = 0⇔ m = 0, ky 6= 0⇔ m 6= 0.



• Keep ky 6= 0, kz 6= 0 and finite.

• Take lim kx → +∞ so that | ky |<<| kx |, | kz |<<| kx |.

| ξy |
| ξx |

=
| kx |
| ky |

>> 1, ~ξA ≈ ξy ~1y.

• ~ξ predominantly in the y-direction and rapidly varying in the x-direction.

• 3 components of vorticity ∇× ~ξ are non-zero.

(∇× ~ξ)z = i(kxξy − kyξx), (∇× ~ξ)x = −i kzξy, (∇× ~ξ)y = i kzξx, ξx = −ky
kx
ξy.

• Take lim kx → +∞

| (∇× ~ξ)y |<<| (∇× ~ξ)x |<<| (∇× ~ξ)z |; ∇× ~ξ ≈ (∇× ~ξ)z ~1z.



Magneto-sonic slow and fast waves

• Y 6= 0, ξz 6= 0, Z = 0.

• Compression, parallel displacement, no parallel vorticity.

• Solutions

ω2 = ω2
sl,f =

k2(v2S + v2A)

2

1±
1− 4ω2

C

k2(v2S + v2A)


1/2

 , ω2
(B=0) = k2v2S

• ωC = the cusp frequency: ω2
C =

v2S
v2S + v2A

ω2
A, v2S = γp0

ρ0 .

• ”sl” (slow) = the minus sign, ”f” (fast) = the plus sign.

• Driven by tension and pressure forces.

• Variation of total pressure P ′ 6= 0

• Plasma pressure and magnetic pressure variations are in phase / antiphase.

• The displacement ~ξ for sl/f magneto-acoustic waves:

~ξsl,f = (~1x +
ky
kx
~1y +

ω2
sl,f − k2v2A
ω2
sl,f

kz
kx
~1z) ξx,

~ξsl,f = (
ω2
sl,f

ω2
sl,f − k2v2A

kx
kz
~1x +

ω2
sl,f

ω2
sl,f − k2v2A

ky
kz
~1y +~1z)ξz.



• Popular view: horizontal motion (ξx, ξy) is dominant for fast waves,

parallel motion ξz is dominant for slow waves.

• True? Not the general rule!

• OK for strong magnetic fields, i.e. vA >> vS

~ξf ≈ (~1x +
ky
kx
~1y) ξx; ~ξsl ≈ ξz~1z.

• No parallel vorticity but the horizontal components are non-zero

∇× ~ξ = −i kz
k2 v2A
ω2
sl,f

ξx (
ky
kx
~1x −~1y).

• Division is clear.

• Parallel vorticity 6= 0 & compression = 0, ξ‖ = 0 : Alfvén waves.

• Parallel vorticity = 0 & compression 6= 0, ξ‖ 6= 0 : M-A waves.

• No mixing of properties.

• Pressureless plasma v2S = 0 : ω2
sl = 0, ω2

f = k2v2A, ξz = 0.

• No slow waves and the fast magneto-sonic waves have no parallel motions.



• Introduce non-uniformity.

Surface Alfvén waves

• Aim = study surface Alfvén waves on a density discontinuity

• Long way: study linear MHD waves in planar geometry

Linear MHD waves in planar geometry

• Cartesian coordinates x, y, z.

• Equilibrium model: Planar plasma in static equilibrium.

• Equilibrium quantities ~B0 = (0, 0, B0((x)), p0(x) and ρ0(x).

• Two preferred directions: ~1x,~1z.

•
∇ × ~B0 = −dB0

dx
~1y, (∇× ~B0)× ~B0 = − d

dx
(
B2

0

2µ
)~1x

• Force balance equation

d

dx
(p0 +

B2
0

2µ
) = 0

.



• Fourier analyze with respect to the ignorable coordinates y, z

•
exp(i(kyy + kzz)), k2 = k2y + k2z .

• Remember exp (−iωt)
• Perturbed quantities ~ξ, f ′ are proportional to

exp(i(kyy + kzz − ωt))

•
f ′(x, y, z; t) = f ′?(x) exp(i(kyy + kzz − ωt))
~ξ(x, y, z, t) = ~ξ?(x) exp(i(kyy + kzz − ωt))

• In what follows drop undersript ? and drop factor exp(i(kyy + kzz − ωt)
•

ω2
A =

(kzB0(x))2

µρ0
= k2zv

2
A(x)



• ωA(x) = local Alfvén frequency; vA(x) = local Alfvén velocity. In a non-

uniform plasma ωA(x) defines the Alfvën continuum.

•
[min ωA, max ωA]

•

ω2
C = ω2

A

v2S
v2S + v2A

• ωC(x) = local cusp frequency; vS(x) = local speed of sound. In a non-uniform

plasma ωC(x) defines the cusp or slow continuum.

•
[min ωC max ωC ]

• Aim = two 1st order ODE for ξx and P ′

• Express the remaining variables in terms of ξx and P ′



• Classic ODEs for ξx and P ′

D
dξx
dx

= −C2P
′,

dP ′

dx
= ρ(ω2 − ω2

A)ξx.

D = ρ0(v
2
S + v2A)(ω2 − ω2

A)(ω2 − ω2
C),

C2 = ω4 − (v2S + v2A)(ω2 − ω2
C)

(
k2y + k2z

)
,

• Equations for ξy, ξz, and ∇ · ~ξ

ρ(ω2 − ω2
A)ξy = ikyP

′,

ρ0(ω
2 − ω2

C)ξz = ikz
v2S

v2S + v2A
P ′

∇ · ~ξ =
−ω2 P ′

ρ0 (v2S + v2A) (ω2 − ω2
C)



• Components of (∇× ~ξ)

(∇× ξ) ·~1x = kz ky
v2A

v2S + v2A

ω2

ρ0(ω2 − ω2
A)(ω2 − ω2

C)
P ′

(∇× ~ξ) ·~1y = −ikz
d

dx


v2S

v2A + v2S

1

ρ0(ω
2 − ω2

C)

P ′

+ ikz
ω2

ρ0(ω
2 − ω2

A)(ω2 − ω2
C)

v2A
v2A + v2S

dP ′

dx

(∇× ~ξ) ·~1z = −ikyP ′
1

{ρ0(ω2 − ω2
A)}2

d

dx

{
ρ0(ω

2 − ω2
A)
}

• Note v2S, v
2
A, ω2

A, and ω2
C are functions of position.

• The equations are coupled .

• The coupling functions CA and CS

•

CA = ikyP
′, CS = ikz

v2S
v2S + v2A

P ′



• General rule: all wave variables are non-zero.

• No pure fast magneto-sonic waves and no pure Alfvén waves.

• Very different from infinite uniform plasma.

• A. Hasegawa and C. Uberoi, 1982 ”The Alfvén wave”.

• The basic characteristic of the ideal Alfvén wave is that the total pressure in

the fluid remains constant during the passage of the wave as a consequence

of the incompressibility condition. For inhomogeneous medium, however,

the total pressure, in general, couples with the dynamics of the motion, and

the assumption of neglect of pressure perturbations becomes invalid.

• P ′ couples the equations.

• The MHD waves have mixed properties.

• Always mixed properties except for ky = 0: ky = 0 CA = 0.

• Equation for ξy is decoupled

ρ(ω2 − ω2
A)ξy = 0

• Pure Alfvén waves for ky = 0 in a non-uniform planar plasma .

• ky = 0 : y-invariant Alfvén waves and y-invariant magneto-sonic waves.



Linear incompressible MHD waves in planar geometry

• Incompressiblity means that the speed of sound is far faster than any other

velocitiy in the system. Mathematically this means

•

∇ · ~ξ = 0, lim vS →∞

• Characteristic frequecies

ωC = ωA

• The slow and Alfvén continua coincide. Note that the Alfvén continuum

has its dominant singularity in ξy while for the slow continuum the dominant

singularity is in ξz. Both singularities are present.

• P ′ is a dependent unknown variable that cannot be computed by using

expressions for the components of ~ξ.



• Equations for incompressible motions on a non-uniform Cartesian 1-D

equilbrium

ρ(ω2 − ω2
A)
d

dx


1

ρ(ω2 − ω2
A)

dP ′

dx

 = k2 P ′

ρ(ω2 − ω2
A)ξx =

dP ′

dx

ρ(ω2 − ω2
A)ξy = ikyP

′

ρ0(ω
2 − ω2

A)ξz = ikzP
′

• Components of (∇× ~ξ)

(∇× ~ξ) ·~1x = 0

(∇× ~ξ) ·~1y = ikzP
′ 1

{ρ0(ω2 − ω2
A)}2

d

dx

{
ρ0(ω

2 − ω2
A)
}

(∇× ~ξ) ·~1z = −ikyP ′
1

{ρ0(ω2 − ω2
A)}2

d

dx

{
ρ0(ω

2 − ω2
A)
}



•All wave variables, with the exception of compression and the x−component

of ∇× ~ξ , are non-zero in a non-uniform plasma . The 3 components of the

Lagrangian displacement are non-zero.

k2 = k2y + k2z

A piece-wise constant density planar geometry

ρ(x) =

 ρi if x ≤ 0,

ρe if x > 0.

• Alfvén continuum is removed and replaced by 2 points: ωA,i, ωA,e

• 2nd order ODE for P ′

d2P ′

dx2
= k2P ′

• Solutions finite at ±∞

P ′i (x) = A1 exp(+kx), ξi(x) = A1
k

ρi(ω
2 − ω2

Ai)
exp(+kx)

P ′e(x) = A2 exp(−kx), ξe(x) = A2
−k

ρe(ω
2 − ω2

Ae)
exp(−kx)



• Continuity of P ′ and ξx at x = 0

P ′i (0) = P ′e(0), ξi(0) = ξe(0)

results in

A1 = A2 = A

and the dispersion relation

ρe(ω
2 − ω2

Ae) + ρi(ω
2 − ω2

Ai) = 0

• The dispersion relation can be solved for frequency ω in terms of kz. This

situation corresponds to standing waves with prescribed kz and a correspond-

ing solution for ω:

ω2 = ω2
k =

ρi ω
2
Ai + ρe ω

2
Ae

ρi + ρe
= k2zv

2
k

• Conversely ω can be prescribed and the dispersion relation can be solved

for kz. This corresponds to propagating waves. The solution is :

k2z =
ω2

v2k



vk is the kink speed. It is defined as

v2k =
ρi ω

2
Ai + ρe ω

2
Ae

ρi + ρe
.

For constant magnetic field Bzi = Bze

v2k =
2

ρi + ρe

B2
z

µ

• ξx(x), ξy(x), ξz(x), P ′(x) depend on x.

• k defines a length scale k = 1/R.

•
exp(±(x/R)), x < 0 : +, x > 0 : − R = 1/k

• Use constant C

C =
A

(kzR)2
B2
z
µ
ρi − ρe
ρi + ρe



• The solutions

P ′i (x)

(B2/µ)
= C (kzR)2

ρi − ρe
ρi + ρe

exp(x/R),

ξx,i(x)

R
= C exp(x/R)

ξy,i(x)

R
= i Cαy exp(x/R)

ξz,i(x)

R
= i Cαz exp(x/R)

P ′e(x)

(B2/µ)
= C (kzR)2

ρi − ρe
ρi + ρe

exp(−x/R),

ξx,e(x)

R
= C exp(−x/R)

ξy,e(x)

R
= −i Cαy exp(−x/R)

ξz,e(x)

R
= −i Cαz exp(−x/R)

αy =
ky
k
, αz =

kz
k
,

ξy
ξz

=
ky
kz



• ξy, ξz are discontinuous at x = 0 due to change of sign of ω2 − ω2
A.

ξy,e(0) = −ξy,i(0), ξz,e(0) = −ξz,i(0)

• Strong counterstreaming motions in the y− and z− directions. Possible

cause of KH-instabilities.

• This effect is enhanced when the true discontinuity is replaced with a

continuous variation.

• Strong shear at x = 0

• Vorticity is present at x = 0 due to discontinuity in ξy and ξz.

(∇× ~ξ) ·~1x = 0

(∇× ~ξ) ·~1y = −2kz P
′ ρi + ρe
ρe ρi

1

ω2
A,e − ω2

A,i

δ(x)

(∇× ~ξ) ·~1z = 2ky P
′ ρi + ρe
ρe ρi

1

ω2
A,e − ω2

A,i

δ(x)



Resonant damping

• The true discontinuity at the surface x = 0 is replaced by a continuous

variation from ρi to ρe in an intermediate layer of thickness l [−l/2 l/2].

• The characteristic frequencies ω2
A(x) = ω2

C(x) vary with position x and define

the continuous spectrum of resonant Alfvén (slow) waves. Here the two

continua coincide.

Alfvén continuous spectrum = [min ωA(x), max ωA(x) ]

• Take density to be a monotically decreasing function in the non-uniform

layer so that

min ωA(x) = ωA,i, max ωA(x) = ωA,e

Obviously

ωA,i < ωk < ωA,e

so the surface Alfvén / slow wave is resonantly damped.

• No long wave length (thin tube) approximation!

• Adopt the thin boundary approximation and use the jump condition for

incompressible motions:



[P ′] = 0, [ξx] = −iπ 1

ρ(xA) | ∆ |
(k2y + k2z)P

′ = −iπ 1

ρ(xA) | ∆ |
k2P ′

• Role of P ′ Hollweg and Yang 1988, JGR, 93, 93, 5423 - 5436 Resonance

absorption can occur in any situation where total pressure fluctuations are

imparted to field lines satisfying the Alfvén and cusp resonances conditions.

• Jump in flux of energy accross resonant position is proportioal to | P ′ |2.
• xA is the position of the resonance where ωk = ωA(xA). In the thin boundary

approximation xA = 0. The quantity ∆ is

∆ =
d

dx

{
ω2 − ω2

A

}
|xA

• The condition on ξx is then

1 + F − iG = 0

with

F =
ρe(ω

2 − ω2
A,e)

ρi(ω2 − ω2
A,i)

, G = π
ρe(ω

2 − ω2
A,e)

ρ(xA) | ∆ |
k

• The term −iG contains the effect of the resonant damping. When we

put G = 0 we recover the dispersion relation for the true discontinuity. Its

solution is ω = ωR = ωk.

• Rewrite the dispersion relation 1 + F − iG = 0 as

ω2 − k2zv2k =
1

ρi + ρe

iπ k

ρ(xA) | ∆ |
ρi(ω

2 − ω2
A,i) ρe(ω

2 − ω2
A,e)



• Because of resonant damping the frequency is complex.

ω = ωR + iγ

• The period and the damping time τD are

Period =
2π

ωR
, τD =

1

| γ |

•Weak damping: use a perturbation method. Neglect the effect of resonant

damping on the real part of the frequency so that ωR ≈ ωk. Also neglect

terms of second order in γ/ωR . Hence

ωR ≈ ωk = ωA(xA), ω2 ≈ ω2
R + 2iωR γ

• Find then

γ

ωR
≈ −π

2 ω2
k

ρ2i ρ
2
e

(ρi + ρe)3
(ω2

A,i − ω2
A,e)

2

ρ(xA) | ∆ |
k

• Take k = 1/R

γ

ωR
≈ −π

2ω2
k

ρ2i ρ
2
e

(ρi + ρe)3
(ω2

A,i − ω2
A,e)

2

ρ(xA) | ∆ |
1

R



This is exactly Equation 77 of GHS92 when this equation is corrected for a

typo and | m |= 1.

• Now take equal and constant magnetic fields B1 = B2 = B

• Straightforward calculation leads to

γ = − π

2R

ρA | ωk |3

| ∆ |
(ρ2 − ρ1)2

(ρ1 + ρ2)
3 .

This is exactly Equation 56 of Ruderman and Roberts, 2002

When B0 = constant it follows that

ρ0(xA) | ∆ |= ω2
A(xA) | dρ0

dx
|xA= ω2

k |
dρ0
dx
|xA

• Hence

γ

ωR
= −π

8

(ρi − ρe)2

ρi + ρe
k

1

| dρ(x)

dx
|xA



Replace k with k = 1/R then

γ

ωR
= −π

8

(ρi − ρe)2

ρi + ρe

1

R

1

| dρ(x)

dx
|xA

• Compare this expression for γ/ωR with those derived in Goossens et al.

2009. See their equations 31 for a pressureless compressible cylindrical

plasma and equation 53 for an incompressible cylindrical plasma. Equations

31 and 53 are derived in the long wave length limit (kzR << 1) . Equation

31 is identical to the equation derived here. The same applies to equation

53 when we drop the quadratic terms in kzR. This is a remarkable result.

Cylindrical or planar geometry does not make a difference in the long wave

length limit.

• The damping time τD

τD
Period

=
4

π2
ρi + ρe

(ρi − ρe)2
1

k
| dρ(x)

dx
|xA



• Assume that density ρ0(x) varies from ρi at x = −l/2 to ρe at x = +l/2 with

steepness α so that
dρ(x)

dx
= −αρi − ρe

l
For a linear profile α = 1, for a sinusoidal profile α = π/2.

• Damping decrement γ
ωR

γ

ωR
= −π

8

(ρi − ρe)
ρi + ρe

kl

α
= −π

8

(ρi − ρe)
ρi + ρe

l/R

α

• The damping time τD

τD
Period

=
4

π2
ρi + ρe
ρi − ρe

α

kl
=

4

π2
ρi + ρe
ρi − ρe

α

l/R

• The expressions for γ/ωR and τD/Period agree with the corresponding ex-

pressions listed in Goossens et al. 2009 for a cylindrical plasma in the thin

tube approximation.



• Go back to ξy, ξz and components of (∇× ~ξ)

ξy = ikyP
′ 1

ρ0(ω2 − ω2
A)

ξz = ikzP
′ 1

ρ0(ω2 − ω2
A)

(∇× ~ξ) ·~1y = ikzP
′ 1

{ρ0(ω2 − ω2
A)}2

d

dx

{
ρ0(ω

2 − ω2
A)
}

(∇× ~ξ) ·~1z = −ikyP ′
1

{ρ0(ω2 − ω2
A)}2

d

dx

{
ρ0(ω

2 − ω2
A)
}

• Recall that for MHD waves (weakly) resonantly damped in the Alfvén

continuum

ω = ωR + iγ, ωR ≈ ωA(xA), γ << ωR

• The values of ξy, ξz are not infinte but very large in absolute value with

opposite values of their real parts across the ideal resonant point x = xA.

• KH-instabilities are difficult to avoid.



• Propagating waves. Now the frequency is given and the dispersion relation

determines the wave number kz.

• Follow and Terradas, Goossens and Verth 2010 (TGV 2010 , A&A, 524,

A23) in case of a cylindrical plasma with a straight field.

• No need to use the long wave limit or the thin tube approximation.

• The wave number kz is complex

kz = kz,R + ikz,I

• The wave length λ and the damping length LD are

λ =
2π

kz,R
,  LD =

1

| kz,I |

• Use a perturbation method. Neglect the effect of resonant damping on

the real part of the wave number so that

k2z,R ≈
ω2

v2k

• The result for the damping lenght LD

LD
λ

=
4

π2
ρi + ρe

(ρi − ρe)2
1

k0
| dρ(x)

dx
|xA



•
k0 =

√
k2y + k2z,R

• As before replace the derivative of equilibrium density with

dρ(x)

dx
= −αρi − ρe

l

and arrive at

LD
λ

=
4

π2
ρi + ρe
ρi − ρe

α

k0 l



Conclusions & Comments

• Linear MHD : No interaction of MHD waves.

• Given wave is defined in the whole space.

• Non-uniformity across magnetic field is fundamental.

• It generates MHD waves with mixed properties.

• Pure Alfvén waves and pure magneto-acoustic waves ???

• Non-zero pressure variations & non-zero horizontal and parallel vorticity.

• Properties of given wave depend on properties of background.

• Resonant absorption in Alfvén continuum. Total pressure perturbation

is non-zero.

• ≈ Alfvén wave = Alfvénic wave .

• Mixed properties = general phenomenon. It does not depend on geom-

etry. Non-uniformity across magnetic field is key.


