
Synthetic Gravity Wave Analyses for New
Exploitation of Satellite Data (SWANS)

Abstract:
Small-scale gravity waves (GWs) are vital to the dynamics of the Earth’s atmosphere, but are difficult to
simulate accurately in weather and climate models. While major advances have been made in recent years
in our ability to observe GWs from space, translating these advances to model development is complicated
by the fragmentary view these observations provide.

In SWANS, our International Team will combine space-based observations and high-resolution simulations
to demonstrate a novel pathway to better representation of GWs and their effects in next-generation models.
We will do this by adapting a widely-used satellite development technique, the Observing System Simulation
Experiment, to the problem of the effectively-fixed GW observing system. This will allow us to produce
detailed information on how current instruments ‘see’ GWs when their sensing parameters are reproduced
in state-of-the-art high-resolution atmospheric models.

This approach will allow us to both identify deficiencies in the current GW observational constellation and
improved ways to observationally constrain GW parameterisations in next-generation weather and climate
models. We will promote these results via our membership in international projects within the World Climate
and World Weather Research Programmes (WCRP and WWRP), ensuring broad dissemination and a path-
way to real-world impact on numerical weather prediction and climate modelling.

A Scientific Rationale

A.1 Gravity Waves - What Are They and Why Do They Matter?

Atmospheric gravity waves (GWs) are small waves with big impacts. Typically hundreds of metres to kilome-
tres in vertical wavelength and tens to hundreds of kilometres in the horizontal, these waves are too small to be
fully resolved in weather and climate models and are highly challenging to observe from space, but are critical
to the dynamics of the atmospheric system.

GWs have important impacts on the atmosphere at nearly all spatiotemporal scales and levels. In particular,
they act as a control on most major atmospheric circulations above the tropopause, including the jet streams,
the Brewer-Dobson circulation, the quasi-biennial oscillation (QBO), and the summer-to-winter mesospheric
residual circulation (Fritts, 1984; Haynes et al., 1991; Baldwin et al., 2001; Fritts and Alexander, 2003; Ineson
and Scaife, 2009). These circulations in turn affect surface weather and climate, particularly at subseasonal
to interannual timescales, via a diverse range of downward coupling mechanisms (Alexander and Rosenlof,
2003; Alexander et al., 2010; Richter et al., 2020). GWs also have strong direct effects on local atmospheric
conditions: they are involved in ozone depletion, cause flight turbulence affecting aircraft, affect cloud formation
in the upper troposphere, and couple into the ionosphere to affect GPS and radio (Whiteway et al., 1997;
Carslaw et al., 1998; McCann, 2001; Kim and Alexander, 2015; Hoffmann et al., 2017; Wright and Banyard,
2020; Bramberger et al., 2022).

However, GWs are still poorly-simulated by even state-of-the-art climate and weather models. This is partly
due to the issues inherent in accurately simulating small-scale processes in models which are by definition

Figure 1: Gravity waves in data from NASA’s AIRS instrument, observed over (a) the Andes mountains, (b)
Scandinavia and (c) a large convective storm in North America. Reproduced from Wright et al. (2021).



limited in spatiotemporal resolution, and partly due to a limited knowledge of GW source mechanisms and
propagation characteristics in the real atmosphere.

This is a major problem in particular for the development of subseasonal- and seasonal-timescale forecasting
systems, which require most GWs to be parameterised, i.e. their effects accounted for in bulk at the scale
of a model grid too coarse to directly resolve the waves. For such systems, GW-driven features such as the
QBO and Brewer-Dobson circulation are key sources of predictability (Ineson and Scaife, 2009; Vitart and
Robertson, 2018). It also imposes important limits on our ability to simulate how atmospheric dynamics will
evolve as our climate changes (Butchart et al., 2020; Richter et al., 2020).

A.2 Bridging the Divide - Observations and Models

Due to their importance, it is vital that GW effects are accurately represented in atmospheric models. This
is true at all simulated time and space scales, from the high-resolution numerical weather prediction (NWP)
models used in daily weather forecasting, which directly resolve a large fraction of the GW spectrum, all the way
through to the coarse-resolution climate models which simulate timescales of decades and longer using GW
parameterisations. However, accurately constraining how these models represent GWs for future development
is complicated by two great technical challenges: (i) observing GWs in global satellite datasets and (ii) fair
comparisons between how GWs are seen in observations and GW-resolving models.

Over the last decade, significant advances have been made in response to the first of these challenges. New
computational techniques have revolutionised our ability to retrieve, detect and characterise GWs in the very
large volumes of data provided by the constellation of satellite instruments in low Earth orbit (e.g. Figure 1),
which has facilitated the production of GW climatologies with significant scientific utility (e.g. Ern et al., 2018;
Hindley et al., 2020, Figure 2). Several members of the proposed Team (Alexander, Ern, Hindley, Hoffmann,
Holt, Wright) have been heavily involved in these efforts, and previous ISSI International Team Projects have
proven critical to the global integration needed for this work.

However, without a solution to the second problem, fair comparisons, the utility of these datasets is
limited. Current satellite GW observational datasets, like those described by Ern et al and Hindley et al, cover
only specific fragments of the GW spectrum. Therefore, directly comparing these observations to GWs in high-
resolution convection-permitting GW-resolving models (Putman and Suarez, 2011; van Niekerk et al., 2018;
Stephan et al., 2019; Polichtchouk et al., 2022) is highly challenging, as we are not comparing like with like.

Consequently, there remains an important mismatch between the observational and modelling communities.
While many researchers do work across this divide, the fragmentary view of the true state that we have makes
it exceptionally challenging to directly compare GW models and observations, both to improve how resolved
GWs are simulated and to advance parameterisations. This divide inhibits use of the observationally-driven
advances that have led and continue to lead to major advances in other areas of earth-system science.

Figure 2: GW momentum flux estimates derived from NASA’s AIRS instrument, in the (top row) eastward
(bottom row) northward direction, for (left) boreal (right) austral winter. Reproduced from Hindley et al. (2020).
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A.3 Our Proposed Approach: a Modified OSSE

Our International Team will build on new developments in this fast-evolving field (Wright and Hindley, 2018;
Stephan et al., 2019; Wedi et al., 2020; Hindley et al., 2021; Kruse et al., 2022) to directly address the problems
that limit the use of satellite data to enhance the modelling of GWs and their effects.

In SWANS, we will use an approach analogous to the Observing System Simulation Experiments of satellite
mission development to make fair comparisons between GW observations and atmospheric models. This
data-synthesis approach will support major advances in GW research, with broad implications for fundamen-
tal atmospheric dynamics and for the development of next-generation NWP & climate models.

Observing System Simulation Experiments (OSSEs) are a technique widely used in the development of new
satellite missions. In an OSSE, output from a high-resolution simulation (often called a ‘nature run’) is sampled
using the resolution and noise characteristics of a proposed instrument design. These synthetic data are
then processed to assess their quality, with this latter step often done by assimilating the data into a broader
observing system of other satellites and models, hence the term OSSE. Based on these results, the design of
the proposed satellite is then modified to improve the final products and overall utility of the system.

We will modify this traditional OSSE loop (Figure 3) to instead target improvements in GW modelling and in
GW detection and characterisation (i.e. data analysis) techniques. Rather than assessing how a varying
observing system will see the atmosphere given a fixed model and fixed data processing chain, we will
instead assess how models and the data processing chain can be modified to better interpret the data
supplied by a fixed observing system. This modified OSSE is a useful approach in the GW case for two
reasons:

1. While our limited understanding of GWs is widely recognised as an urgent problem which needs to be
addressed as weather models approach kilometre-scale resolutions (Stevens et al., 2019; Wedi et al.,
2020; Stephan et al., 2022), due to satellite design and launch timescales suitable observing instruments
are very unlikely to come on-stream until the 2030s (Sinnhuber et al., 2021).

2. This approach will unlock the door to the reinterpretation of decades of existing GW-resolving satellite
data. It thus has significant potential to help understand how GWs interact with, control and amplify the
dynamical effects of long-term Earth-system processes, including the impacts of the 11-year solar cycle
on the atmosphere and changes to the structure of the jet streams as our climate changes.

Such an approach will require the combined input of modellers able to provide the simulation-system knowl-
edge needed to understand and improve atmospheric models, retrieval scientists able to explain and reproduce
the ways in which existing satellites measure the atmosphere, remote sensing experts experienced with the
methods currently used to characterise GWs in these observations, and theorists with the knowledge and
mathematical skill needed to contextualise the novel information our approach will produce. Our International
Team will bring specialists in all these areas together to generate the knowledge needed for a step change
in our ability to characterise and simulate GWs in the terrestrial atmosphere.

Figure 3: Schematic showing the approach we will take in SWANS. The upper row shows the operational
flow for a satellite-design OSSE: a fixed model atmosphere is sampled using the proposed system, then the
extracted data is processed, the results evaluated, and the observing system modified. In our project, we will
instead assume a fixed observing system and modify the model and processing chain to better reproduce real
GW observations. For each row, orange boxes indicate elements that are modified and blue elements that stay
constant.
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B Objectives and Work Plan

B.1 Objectives

Our primary goal is to advance weather and climate science by providing the data, models and tools needed
to improve our knowledge of small-scale gravity waves and their role in the atmospheric system.

To achieve this goal, we will

• generate synthetic measurements representative of current satellite- and selected non-satellite systems,
by applying novel sampling and analysis techniques to state-of-the-art high-resolution weather forecast
models (advancing upon the work of Wright and Hindley (2018) and Kruse et al. (2022)).

• apply advanced detection and characterisation techniques to these synthetic data to produce equivalent
synthetic GW measurements (using methods described by Alexander et al., 2008; Lehmann et al., 2012;
Ern et al., 2017; Wright et al., 2017, 2021, amongst others; see also Figure 2).

• compare the GWs observed in these synthetic measurements to those present in the original model
fields, then use our Team’s detailed knowledge of instrument characteristics and GW theory to identify
which differences arise due to measurement limitations and model inaccuracies respectively.

The very-high resolution model runs we will use already exist as part of other projects we are individually
involved in, including INCITE 1 km runs of the ECMWF IFS (Polichtchouk et al., 2022), high-resolution runs
in multiple models carried out as part of the DYAMOND project (Stevens et al., 2019), and Nature Runs for
satellite OSSEs carried out in the GEOS model (Holt et al., 2017). We will have the opportunity to feed back
modifications into new iterations of these models between the two in-person SWANS workshops, and will
devote time at our first meeting to detailed planning of how to effectively exploit these large-volume datasets.

These comparisons will provide the evidence base to improve both (i) simulation of GWs by atmospheric
models and (ii) measurement techniques used to characterise GWs in observations, allowing our Team to

1. quantify the strengths and limitations of the current GW-resolving observational constellation
2. validate high-resolution convection-permitting global GW simulations of the type that will form the dynam-

ical basis of next-generation weather forecasting systems, and
3. identify and highlight the key gaps in current observational techniques, at an early enough stage to be

integrated into the design of next-generation GW-resolving satellite instruments.
Targets 1 and 3 are particularly timely in the context of current development of Cairt, a candidate ESA Earth
Explorer 11 mission intended to resolve fine-scale atmosphere dynamics which will launch in ∼2032 if selected.

B.2 Schedule

We plan two five-day in-person and three two-day virtual meetings, to be attended by all team members. The
first meeting will be in-person, to provide the best environment for encouraging positive inter-personal team
building and collaboration between all Team members. Beforehand, participants will prepare brief summaries
of available resources, including model output and GW detection software. At the meeting we will discuss
these inputs, develop a detailed action plan, and identify targets and progress milestones. We will also select
an individual leader for each output (see below), in order to maintain focus.

We will hold two virtual meetings between the in-person meetings, spaced evenly across this period. At these
meetings, we will discuss results achieved to date and retarget our work on this basis. This will include design-
ing new model runs, modifications to our sampling techniques, and changes to our GW detection methods.

At the second in-person meeting we will discuss our results, and refine them into clearly-structured manuscripts.
These manuscripts will distill the new information we generate for the broader community, including specific
recommendations for future development of models, instruments and software techniques. A follow-up virtual
meeting around a month after the in-person meeting will be used to steer the manuscripts towards final sub-
mission. Finally, we will seek a final meeting of opportunity (not funded by ISSI) at a conference attended by
researchers in our field, where we can present our final results and link them to their broader scientific context.

B.3 Planned Outputs

We plan to produce 2-4 influential publications on GW observational tests of weather and climate model data,
to be completed by the end of the 2-year project. The exact details of these publications will be determined at
the first in-person meeting, but are likely to be selected from the following topics:

• quantification of the uncertainties in existing GW observational analyses, both from instrument sampling
and data analysis techniques.
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• case studies examining the roles of GWs at different lengthscales and from different sources, to inform
seamless parameterisations operating across the ‘grey zone’ of partially-resolved GWs (Vosper et al.,
2016).

• a detailed review of existing observational capabilities and knowledge, including details of the ‘missing’
observations needed to address current and near-future modelling needs, acting as an update of the
most recent major review of the field (Alexander et al., 2010).

• quantitative constraints for GW parameterisation schemes that account for the fragmentary spectral cov-
erage of the input observations

Completing manuscripts which address all of these topics is unlikely within the two-year window, but our Team
will start from a strong position given that the model output and data processing software needed for the first
phase of our work are already available, with only the sampling step required to produce the products needed
for our first pass through the OSSE operational loop. Based on past experiences of Team members with ISSI
International Teams, it is likely that the materials collected and collaborations forged during the project will
lead to further publications. We also hope to publish a global GW climatology as a data product that can be
accessed by other model groups for future validation efforts, merging the best features of and improving upon
the Ern et al. (2017) and Hindley et al. (2020) climatologies using the new knowledge our project generates.

We will ensure acknowledgement of ISSI’s role in all publications and products.

B.4 Timeliness

SWANS is a highly timely project. It builds upon very recent modelling and methodological advances, including
new kilometre-scale global weather simulations (Stephan et al., 2019; Wedi et al., 2020; Polichtchouk et al.,
2022; Stephan et al., 2022), new techniques able to extract much more precise measurements of GW proper-
ties from observations than previous methods (Hindley et al., 2020; Wright et al., 2021) and novel approaches
for comparing modelled and observed GWs (Wright and Hindley, 2018; Kruse et al., 2022).

At an output level, in addition to supporting plans for Cairt (discussed above), our work will fill a large need
for observational constraints on subseasonal to decadal weather models. It will also provide an important
opportunity to collectively produce an up-to-date review of work in the field - the most recent major such review
was in 2010 (Alexander et al., 2010), over a decade ago.

B.5 Why ISSI?

ISSI support of this project will allow our diverse team of scientists to meet and work towards our scientific
objectives. An ISSI International Team makes focused, in-depth discussions possible, rather than merely
presenting work as at a scientific conference.

This project builds upon the recent New Quantitative Constraints on Orographic Gravity Wave Stress and Drag
International Team which ran from 2019-2021, with several shared members, and therefore we are highly fa-
miliar with the benefits ISSI offers. The first meeting of this Team was a valuable opportunity to meet informally
and work as a group, which allowed us to build a team spirit which sustained the group through the pandemic-
related cancellation of the second planned meeting while still producing useful output, culminating in a detailed
publication which we expect to have significant impact on the field (Kruse et al., 2022).

The project is closely aligned with ISSI’s remit to support research that uses space data and applying theory
with direct application to satellite data.

B.6 The Team

The Team will consist of the following 12 members: Joan Alexander (NWRA, USA), Manfred Ern (FZ Jülich,
Germany), Neil Hindley (University of Bath, UK), Lars Hoffmann (FZ Jülich, Germany), Laura Holt (NWRA,
USA), Chris Kruse (NWRA, USA), Annelize van Niekerk (Met Office, UK), Riwal Plougonven (École Poly-
technique, France), Inna Polichtchouk (ECMWF, UK), Bill Putman (NASA, USA), Claudia Stephan (MPI für
Meteorologie, Germany) and Corwin Wright (Team Leader, University of Bath, UK).

Our team has a balanced gender representation (5 female members, 7 male), a mix of seniority levels (3
senior, 3 mid-career and 6 early-career scientists), and represents a broad disciplinary mix incorporating ob-
servationalists, modellers, and theorists. All team members commit to attending all meetings.

B.7 Financial Support Requested

We request hotel and per-diem support for the twelve team members and for two additional scientists at a
career stage earlier than two years post-PhD, who will be selected at a later date in accordance with ISSI
guidelines. We also request financial support for the Team Leader’s travel to Bern.
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University of London, UK, Thesis: Baroclinic Jets on “Other” Jupiters and Earths 

2006-2010: MSci in Mathematics with Statistics, Queen Mary, University of London, 
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