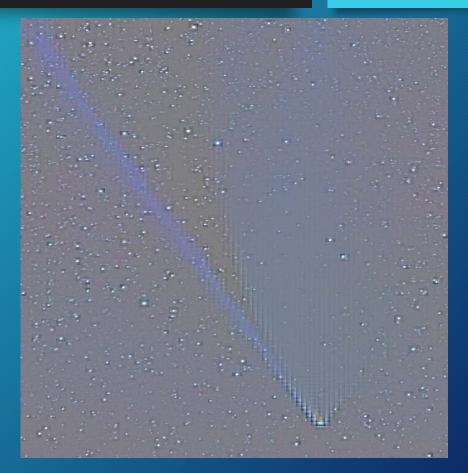
ISSI International Teams Call

- Annual Call by International Space Science Institute (Bern-Beijing) to address specific self-defined problems in the Space and Earth Sciences (deadline usually around mid March)
- Proposal Evaluated by Science Commitee
- International Teams composed of about 8-15 scientists of different nationalities and expertise
- ISSI supports lodging and per-diem for all team members and travel only for team leader for 2 to 3 one-week meetings in 2 years


Characterization of the transition from supervolatiles-driven activity to water-driven activity in inbound Dynamically New Comets

ISSI International Team

F. La Forgia, D. Bockelee-Morvan, D. Bodewits, B. Gundlach, Y. Kim, S. Lorek, R. Marschall, A. Migliorini, S. Opitom, A. Pommerol, S. Protopapa, C. Tubiana, J.-B. Vincent, A. Guilbert-Lepoutre & M. Fulle

Motivation

- Comet Interceptor mission will encounter a DNC (first time in the inner Solar System) at about 1 AU but it will choose the target to get there in time when it will be at about 10 AU
- At large heliocentric distances cometary activity is driven by supervolatiles sublimation (+amorphous-crystalline transition phase?) while at perihelion it is driven by water-ice sublimation.
- The target will be chosen and the spacecraft will depart before the comet will cross the water activity onset
- Need to characterzie this transition in order to
 - Forecast at best a comet activity behavior from the sole observations @ >10 AU
 - And therefore give constraints to choose the best target in terms of science & safety

The Team

Fiorangela La Forgia	University of Padova	ITALY	fiorangela.laforgia@unipd.it
Dominique Bockelée-Morvan	Observatoire de Paris	FRANCE	Dominique.Bockelee@obspm.fr
Dennis Bodewits	Auburn University	USA	dzb0059@auburn.edu
Bastian Gundlach	Techn. Universität Braunschweig	g GERMANY	<u>b.gundlach@tu-bs.de</u>
Yoonyoung Kim	Techn. Universität Braunschweig	7 GERMANY	<u>yoonyoung.kim@tu-bs.de</u>
Sebastian Lorek	Lund Observatory	SWEDEN	<u>sebastian.lorek@sund.ku.dk</u>
Raphael Marschall	Southwest Research Institute	USA	marschall@boulder.swri.edu
Alessandra Migliorini	Istituto Nazionale Astrofisica	ITALY	<u>alessandra.migliorini@inaf.it</u>
Cyrielle Opitom	University of Edinburgh	UK	<u>copi@roe.ac.uk</u>
Antoine Pommerol antoine.pommergol@space.ur	· · · · · · · · · · · · · · · · · · ·	WITZERLAND	
Silvia Protopapa sprotopapa@boulder.swri.edu	Southwest Research Institute	USA	
Cecilia Tubiana	Istituto Nazionale di Astrofisica	ITALY	cecilia.tubiana@inaf.it

Additional Experts				
Jean-Baptiste Vincent	DLR	GERMANY	jean-baptiste.vincent@dlr.de	
Aurelie-Guilbert Lepoutre lyon1.fr	CNRS	FRANCE <u>a</u>	urelie.guilbert-lepoutre@univ-	

+ Marco Fulle (additional expert invited for first meeting)

• Adding Young Scientists (also supported by ISSI)

ISSI Bern > International Teams > Characterization of the Transition from...

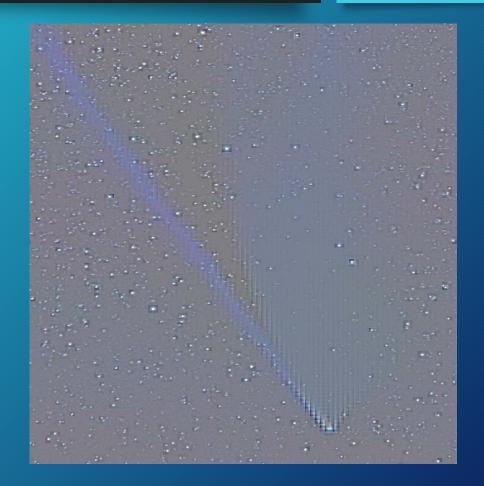
Characterization of the Transition from Supervolatiles-Driven Activity to Water-Driven Activity in inbound Dynamically New Comets

ISSI Team led by F. La Forgia

Home Team Meetings Publications

Scientific Rationale

Dynamically New Comets (DNCs) are the most preserved bodies in the Solar System and provide the unique opportunity to investigate the unaltered pristine materials from which the Solar System formed. DNCs have been found to be already active at about 26 AU from the Sun where the temperature is too cold to allow water ice to sublimate. At those distances, the sublimation of supervolatile ices like CO2 and CO is considered responsible for activity.



- Kickoff Meeting 15 Nov 2021
- First in-person Meeting in Bern 7-11 March 2022
 - Planning for the next steps..

The project: Goals

- Investigate and characterize the transition from the supervolatiles-driven activity observed at large heliocentric distances and the water-driven activity typically observed around perihelion.
- Build up robust observational methods and modeling constraining to improve our capability to anticipate the activity levels and patterns of inbound DNCs in view of the *Comet Interceptor* mission.

Key questions

- Are there any differencies/similarities within DNCs and returning comets?
 - o in the observed gas/dust/icy grains/relative abundances/radial profiles, etc..
- What are the best observables for identifying and characterizing a DNC's activity early on?
- Is there any observational evidence specific at the transition points?
- The differences observed in the behavior of different comets at the transitions are due to specific physical properties?
 - Nucleus size/shape/spin, chemical composition, different evolution, different structure?
- What are the model parameters that mostly influence the predictions and which are the most sensitive to uncertainty
- Are there sublimation experiments that can further constrain models and/or observational strategies?

The first meeting: Agenda

- First in-person meeting in Bern 7-11 March 2022
- Quite full agenda, very interesting presentations by all team members
- A few merged session with Rosita's team (same week in Bern – 3 team members in common)
- Visit to IceLab Laboratory in Bern

ISSI Team

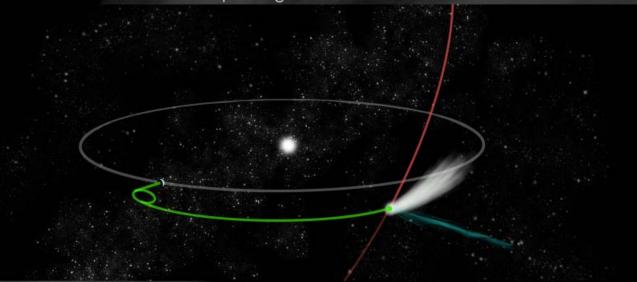
Characterization of the Transition from Supervolatiles-Driven Activity to Water-Driven Activity in inbound Dynamically New Comets

7-11 March 2022, First Meeting Agenda v.5

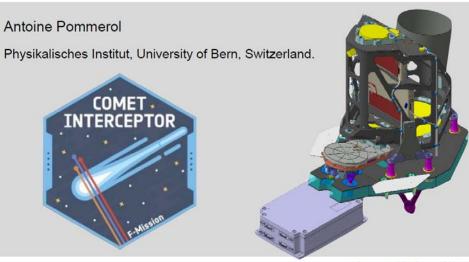
Monday, 7th March

Morning Session – Motivation & Comet Interceptor mission

9:30	Mark Sargent ISSI Science Program Manager	Welcome, Introduction
9:45	Fiorangela La Forgia	Motivation & summary of the project
10:00	Cecilia Tubiana	Comet Interceptor science goals
10:30	Raphael Marschall	Dust Hazard Assessment Model
11:00	coffee break	
11:30	Aurelie Guilbert-Lepoutre	Gas Coma Modeling for Comet Interceptor
12:00	Antoine Pommerol	Colour Imager for Comet Interceptor
12:30	Lunch break	


Afternoon Session - Observations (gas/dust)

14:30	Cyrielle Opitom	Observations of volatiles N2+ and CO+ in the optical
15:00	Cyrielle Opitom	Oxygen G/R ratio and Fe/Ni emissions observed at 2I/Borisov
→	Merged Session with Rosita's Team	
15:30	Alessandra Migliorini (remotely)	Comet discovery surveys: LSST status update
16:00	D. Bockelee-Morvan	New findings on distant activity of 29P
16:30	Aurelie Guilbert-Lepoutre	New results on Centaurs
17:00	Welcome Drink ISSI?	
17:30	EOB	


Motivation and Mission perspective

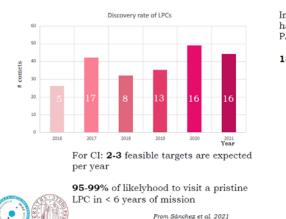
- Overview of CI (C. Tubiana)
- Overview of the Dust Hazard Engeneering Model used for CI and its funcionalities (R. Marschall)
- Overview of the Gas Coma Modeling used for CI (A. Guilbert-Lepoutre)
- Status of CoCa camera (A. Pommerol)
- Encounter with comet close to the ecliptic plane

Targets like this <u>are</u> being found, e.g. C/2021 O3 (Pan-STARRS) and C/2021 P4 (ATLAS), found in July-August 2021, could have been reachable if mission was operating now

Comet Camera - CoCa

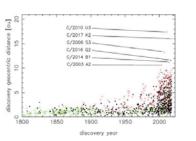
A. Pommerol | ISSI | Bern | 07.03.2022

 u^{b}

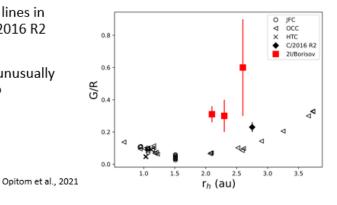

NIVERSITAT

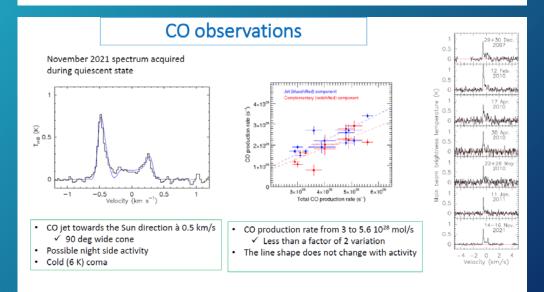
Ground based Observations

- Statistics of DNC discovery and LSST (A. Migliorini)
- Optical spectroscopy of DNC (C. Opitom)


Statistics for comets

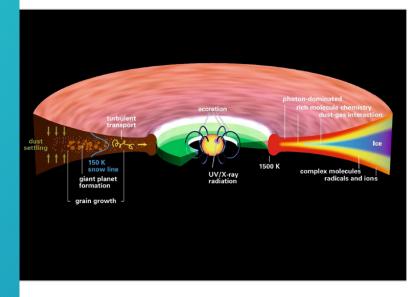
 IR and sub-mm observations of 29P (D. Bockelee-Morvan)


In total, **442 hyperbolic comets** have been discovered so far by PANSTARRS and other surveys


136 of which with q < 1.2 AU

Forbidden oxygen lines

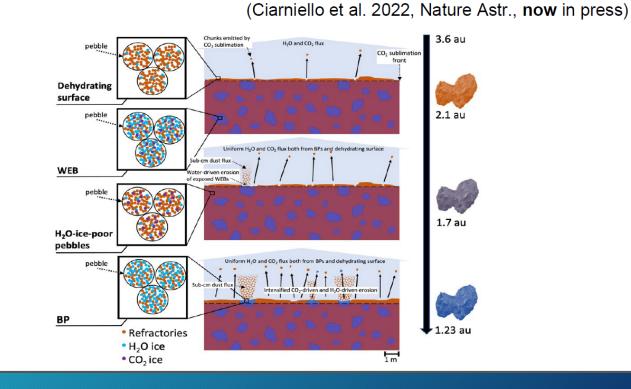
- Oxygen forbidden lines in 2I/Borisov and C/2016 R2
- Diagnostic of the unusually high CO/H2O ratio



Comets formation and evolution

- Overview of comet formation models (S. Lorek)
- New results on collisional evolution of the Kuiper Belt (R. Marschall)

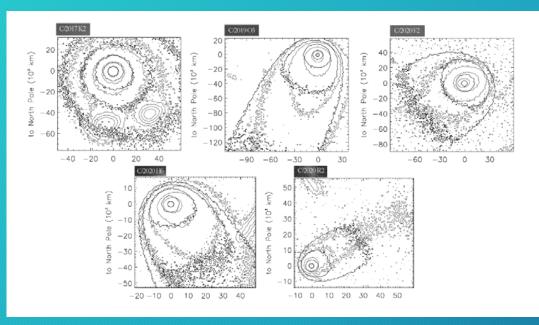
Formation location of comets

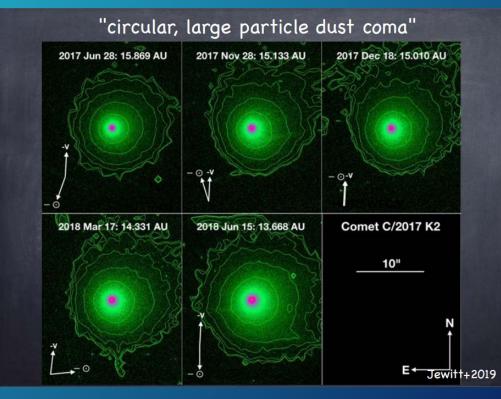


- formation in the cold midplane layer
- outside snowline
- presence of ices
- mixed-in material from inner disc

Henning & Semenov (2013)

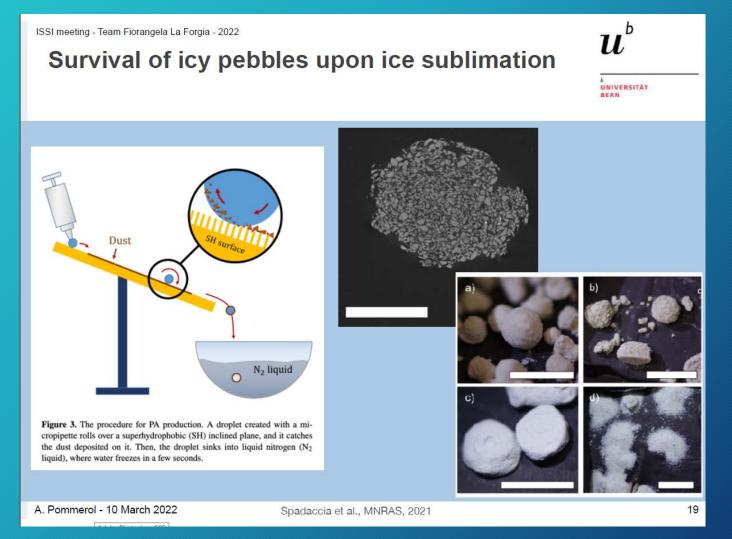
Comets activity


- Models of comets internal structure and activity drivers (B. Gundlach)
- Morphological features as proxy of comets evolution by supervolatiles (J.-B. Vincent)
- WEB's activity model (M. Fulle)



Meter-sized WEBs embedded in **pristine** water-poor matrix

Ground based Observations 2


- Application of WEBs model to observations of distant comets (F. La Forgia)
- Dust coma observations C/2017 K2 (Y. Kim)
- Importance of seasonal variations on observations (R. Marshall)
- Observations and modeling of water ice in the coma of comet (S. Protopapa)
- CO bump as evidence of past activity? (D. Bodewits)

Laboratory Sublimation Experiments

• The IceLab project (A. Pommerol)

Wrap Up

- interstellar comets which behaves as SS comets
- LPC which show peculiar composition (C/2016R2, etc)
- CO/CO2 driven activities observed also in JFCs, Centaurs, etc..
- Very few data
- There is no corrent **observational** difference between LPC and DNC...
- Currently 443 hyperbolic comets are known, almost half of them discovered after 2005 (205)
- LSST will be able to discover LPC at a rate much higher than today
 - operating from mid-2024, 6 bands
- Eccentricity can not be retrieved with enough accuracy until after a few months of observations
- 39 DNCs have been actually "studied" (Leonard, Siding Spring, ISON, Garrad, etc..)
- Very few observed @ large *r_h* (C/2010 U3, C/2017 K2 ..)
- Many of them have q > 4-5 AU

distant LPC with q<4AU

- Comets formed (most probably) within streaming instabilities that brought to gravitational collapse (gentle process) in the protoplanetary disk
- Maybe they suffered by collisional evolution, but this seems to have somehow preserved their structure/composition (pebbles)
- Assuming they are formed by pebbles:
 - Thermal conductivity
 - Dust-to-ice ratio
 - Permeability/diffusivity
 - Tensile strengths

Follow T @ sunrise, Analyze "local" activity timescale → dust-to-gas

- Surface topographic features are possible representative of CO/CO2 activity
- Water poor/Water rich pebbles with analytical models are able to describe most of Rosetta data
- Within WEBs model differences among comets (gas mixing ratios, dust activity) might only be due to
 - A_p/A_r
 - *R_N*
 - Seasons \rightarrow nucleus spin rate/spin status

First results

- <u>Acnowledgement</u> to ISSI Team in the paper in review (application of WEBs model to TNG observations, M. Fulle)
- <u>Proposal</u> submitted for observations at VLT of Oxygen ratio in distant comets (C. Opitom)

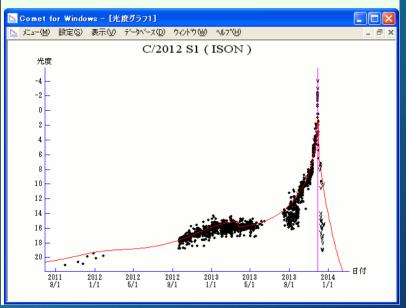
• Paper by Fulle

A possible selection criterion of the target of Comet Interceptor mission https://ui.adsabs.harvard.edu/abs/2023AdSpR..71.4424F/abstract

Computation of the maximum size of the nucleus of a comet that will be under the activity level safety criterion for CI and detectability from ALMA and JWST

Ongoing work..

- 1. Review and merge available results on LPCs (with q < 4 AU) observed @ large heliocentric (gas, dust, etc.) and experiments
 - different tecniques: photometry, low/high res spectroscopy, radio
- 2. Map how comets increase in brightness (r_h -dependencies)
 - → Large databases (COBS, Yoshida?)
 - \rightarrow how to sample also faint comets?
 - ightarrow look for observational correlations (Af ho , volatile abundances


etc.)

 \rightarrow look for dynamical correlations (q, a , perihelion argument, etc.)?

 \rightarrow give different weights to parameters using statistical analysis within models?

📩 Magnitudes Graph

* Green curve is: m1 = 5.5 + 5 log d + 10.0 log r

Ongoing work..

- 3. Check statistics of comet magnitudes expectations increases/decreases from 10 to 1 AU
 - Do they really are statistically more frequent comets that deceive the expectations among DNCs ?
 - From a dynamical point of view:
 - \rightarrow Is there a way we can form different populations of comets?
 - → Is there a way in the structure of the nuclei to retain ices so that DNC "should" behave differently than LPCs?
- 4. Planning proposals for
 - ground-based reference check of CO, CO2 detection through IFU observations of OI lines
 - other proposals? Smaller telescopes?
 - Snapshots of large number of comets vs monitoring of single comets?
 - Low resolution / high resolution?
 - Radio/submm
 - magnitude-CO correlation → limiting magnitude estimate for radio observations