# Spectropolarimetric inversions of solar lower atmosphere

Ricardo Gafeira, ISSI-BJ 12/07/2023





UNIVERSIDADE D COIMBRA

# **Radiative transfer** $\mu \frac{dI_{\nu}}{d\tau_{\nu}} = I_{\nu}(\tau_{\nu}) - S_{\nu}(\tau_{\nu})$

## $I_{\nu}$ is the intensity and $S_{\nu}$ is the source function $S_{\nu} = \epsilon_{\nu}/\kappa_{\nu}$ where $\epsilon_{\nu}$ is the emissivity $\epsilon_{\nu}$ is the absorption matrix $\mu = cos\theta$ where $\theta$ is the angle of the line of sight with

the center of the disk



# **Radiative transfer** $\mu \frac{dI_{\nu}}{d\tau_{\nu}} = I_{\nu}(\tau_{\nu}) - S_{\nu}(\tau_{\nu})$

## Atmospheric conditions go into $\epsilon_{\nu}$ and $\kappa_{\nu}$ , by consequence into $\tau_{\nu}$ and $S_{\nu}$ . Both changes with $T, p, \nu$ and the abundances.

## Absorption profile



#### **Formation height**



## Stokes parameters (I,Q,U,V)



### Filing factor



#### Positive polarity







### Inversion of the radiative transfer equation





#### How well can we retrieve the "real" solar atmosphere

















#### Model atmosphere

| l oa(tau)              | electron |                        |         | _       |
|------------------------|----------|------------------------|---------|---------|
| LUG(lau)               |          | В                      |         |         |
| 0.9 <mark>7</mark> 967 | 1.00000  | 0.000                  |         |         |
| 1.1.900                | 9020.70  | 287 <mark>8</mark> .69 | 206600. | 95.8330 |
| 1. 00                  | 8808.10  | 22 23                  | 197100. | 95. 00  |
| 0.90,000               | 8588.10  | 1671.66                | 187900. | 96.680  |
| 0.772000               | 8351.80  | 1218.46                | 179000. | 96.1860 |
| 0.643000               | 8125.30  | 884.577                | 170400. | 96.3030 |
| 0.514000               | 7900.80  | 633.346                | 161900. | 96.4210 |
| 0.385000               | 7678.10  | 446.653                | 153800. | 96.5380 |
| 0.256000               | 7440.30  | 301.915                | 146100. | 96.6570 |
| 0.127000               | 7189.30  | 195.011                | 138500. | 96.7740 |
| -0.00200000            | 6960.80  | 127.413                | 131100. | 96.8920 |
| -0.131000              | 6760.40  | 85.5232                | 124000. | 97.0090 |
| -0.260000              | 6568.20  | 57.1834                | 117300. | 97.1280 |
| -0.389000              | 6385.50  | 38.2577                | 110700. | 97.2450 |
| -0.518000              | 6230.40  | 26.6263                | 104300. | 97.3620 |
| -0.647000              | 6117.50  | 19.9498                | 98330.0 | 97.4800 |
| -0.776000              | 6012.40  | 15.1018                | 92540.0 | 97.5980 |
| -0.905000              | 5919.50  | 11.6606                | 86880.0 | 97.7160 |
| -1.03400               | 5833.70  | 9.10339                | 81460.0 | 97.8330 |
| -1.16300               | 5760.80  | 7.26995                | 76320.0 | 97.9510 |
| -1.29200               | 5695.00  | 5.87700                | 71350.0 | 98.0690 |
| -1.42100               | 5631.70  | 4.77000                | 66630.0 | 98.1870 |
| -1.55000               | 5567.60  | 3.86396                | 62120.0 | 98.3040 |
| -1.67900               | 5505.00  | 3.13730                | 57800.0 | 98.4220 |
| -1.80800               | 5437.10  | 2.52334                | 53680.0 | 98.5390 |
| -1.93700               | 5366.20  | 2.02075                | 49780.0 | 98.6570 |
| -2.06600               | 5294.50  | 1.61812                | 46060.0 | 98.7750 |
| -2.19500               | 5221.90  | 1.29609                | 42540.0 | 98.8920 |
| -2.32400               | 5149.60  | 1.04131                | 39190.0 | 99.0100 |
| -2.45300               | 5077.60  | 0.839019               | 36010.0 | 99.1280 |
| -2.58200               | 5005.70  | 0.678205               | 34210.0 | 99.2460 |
| -2.71100               | 4933.40  | 0.549545               | 33970.0 | 99.3630 |
| -2.84000               | 4860.10  | 0.446177               | 33690.0 | 99.4810 |
| -2.96900               | 478 00   | 0.362690               | 333 0   | 99.5990 |
| -3.09800               | 470 .10  | 0.294966               | 3300 .0 | 99.7160 |
| -3.22700               | 463.10   | 0.240492               | 3259    | 99.8340 |

#### Temperature Mic. Turbulence

|         | Inc.    |       | Ζ                 | Gas pressure |                      |  |
|---------|---------|-------|-------------------|--------------|----------------------|--|
|         |         |       |                   |              |                      |  |
| 52475.0 | 45. 198 | 0.000 | -101 770          | 144100.      | 2.36 10e-07          |  |
| 52362.0 | 45, .98 | 0.000 | -9 <b>6</b> 330   | 136890.      | 2.3 0e-07            |  |
| 52250.0 | 45. 198 | 0.000 | -79.5750          | 130010.      | 2.26.70e-07          |  |
| 52137.0 | 45.0198 | 0.000 | -68.7210          | 123360.      | 2.21330e-07          |  |
| 52024.0 | 45.0198 | 0.000 | -57 <b>.</b> 8670 | 116850.      | 2.16010e-07          |  |
| 51912.0 | 45.0198 | 0.000 | -46.9940          | 110490.      | 2.10460e-07          |  |
| 51799.0 | 45.0198 | 0.000 | -36.0270          | 104250.      | 2.04640e-07          |  |
| 51687.0 | 45.0198 | 0.000 | -24.7610          | 98027.0      | 1.98810e-07          |  |
| 51574.0 | 45.0198 | 0.000 | -12.8270          | 91629.0      | 1.92510e-07          |  |
| 51462.0 | 45.0198 | 0.000 | 0.0000            | 85004.0      | 1.84570e-07          |  |
| 51349.0 | 45.0198 | 0.000 | 13.6910           | 78261.0      | 1.75040e-07          |  |
| 51236.0 | 45.0198 | 0.000 | 28.3030           | 71467.0      | 1.64570e-07          |  |
| 51125.0 | 45.0198 | 0.000 | 44.0550           | 64618.0      | 1.53090e-07          |  |
| 51012.0 | 45.0198 | 0.000 | 60.9860           | 57817.0      | 1.40400e-07          |  |
| 50900.0 | 45.0198 | 0.000 | 78.7040           | 51328.0      | 1.26950e-07          |  |
| 50787.0 | 45.0198 | 0.000 | 96.8860           | 45325.0      | 1.14070e-07          |  |
| 50674.0 | 45.0198 | 0.000 | 115.470           | 39830.0      | 1.01820e-07          |  |
| 50562.0 | 45.0198 | 0.000 | 134.360           | 34855.0      | 9.04140e-08          |  |
| 50449.0 | 45.0198 | 0.000 | 153.430           | 30403.0      | 7 <b>.</b> 98660e-08 |  |
| 50337.0 | 45.0198 | 0.000 | 172.540           | 26468.0      | 7.03350e-08          |  |
| 50224.0 | 45.0198 | 0.000 | 191.620           | 23012.0      | 6.18380e-08          |  |
| 50111.0 | 45.0198 | 0.000 | 210.670           | 19979.0      | 5.43070e-08          |  |
| 49999.0 | 45.0198 | 0.000 | 229.700           | 17321.0      | 4.76170e-08          |  |
| 49887.0 | 45.0198 | 0.000 | 248.750           | 14988.0      | 4.17180e-08          |  |
| 49775.0 | 45.0198 | 0.000 | 267.920           | 12933.0      | 3.64760e-08          |  |
| 49662.0 | 45.0198 | 0.000 | 287.250           | 11125.0      | 3.18020e-08          |  |
| 49549.0 | 45.0198 | 0.000 | 306.740           | 9537.50      | 2.76430e-08          |  |
| 49437.0 | 45.0198 | 0.000 | 326.400           | 8147.60      | 2.39460e-08          |  |
| 49324.0 | 45.0198 | 0.000 | 346.210           | 6936.40      | 2.06760e-08          |  |
| 49212.0 | 45.0198 | 0.000 | 366.130           | 5886.00      | 1.77960e-08          |  |
| 49099.0 | 45.0198 | 0.000 | 386.140           | 4979.20      | 1.52760e-08          |  |
| 48987.0 | 45.0198 | 0.000 | 406.180           | 4200.30      | 1.30800e-08          |  |
| 488 .0  | 45.0198 | 0 70  | 426.200           | 357 40       | 1.11800e-08          |  |
| 487(1.0 | 45.0198 | 0.00  | 446.130           | 296 .10      | 9.54370e-09          |  |
| 486.0.0 | 45.0198 | 0.00  | 465.920           | 248 .60      | 8.13320e-09          |  |

Azim.

V

Gas density

# Formation height



Mats Carlsson, Oslo



#### Optical depth to geometrical scale

Method based on the minimizing the divergence of the magnetic field vector derived from spectropolarimetric observations





See B. Löptien 2018 for more details

### **Possible spectropolarimetric observations**



### Possible spectropolarimetric observations



# Thanks of your attention