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1 The Magnetohydrostatic Equations

The magnetohydrostatic (MHS) equations to be solved can be written as:

J×B−∇p− ρg = 0, (1)

∇×B = µ0J, (2)

∇ ·B = 0, (3)

where ρ is the mass density, p is the plasma pressure, B is the magnetic field, J is the electric

current deinsity, and g = 272.2m/s2 is the gravitational acceleration. The above system of

equations are underdetermined given that it has more variables than equations. To close the

system, we might relate pressure and density with temperature (T) via an equation of state

p = ρ
RT

M
, (4)

where R is the ideal gas constant and M is the mean atomic weight. In principle, we

need an energy-balance equation to treat the unknown T by dealing with plasma heating

and cooling owing to radiation, thermal conduction, viscus dissipation, resistive dissipation,

etc. Some of the above physics processes are still unclear to us. Thus, in practice, the

MHS modeling ignores the energy-balance equation and prescribe a pressure scale height

distribution (Gilchrist et al., 2016; Miyoshi et al., 2020) or leaves the system underdetermined

(Zhu et al., 2013; Zhu and Wiegelmann, 2018). The formula of the pressure scale height is:

h =
1

g

RT

M
=

1

g

p

ρ
. (5)

A well-set boundary conditions as discussed in Gilchrist and Wheatland (2013) for the MHS

equation are:

B · n̂|∂V = Bn, (6)

J · n̂|±∂V = Jn, (7)

p|±∂V = pbnd, (8)

where ±∂V is either +∂V where Bn > 0 or −∂V where Bn < 0. This means normal

component of B is prescribed over ∂V , while p and normal component of J are prescribed

at only one polarity.
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2 Reference models

2.1 Reference model 1: Low’s semi-analytical MHS model

Low (1991) describes a special class of 3D solutions for the MHS equations (1)-(3). The

idea is to prescribe special electric currents to reduce the MHS equations to the following

tractable form:

∇×B = αB+ ae−κz∇Bz × ẑ, (9)

where α, a, and κ are constants in space. The above equation has two current systems:

linear force-free current and current being everywhere perpendicular to the gravitational

force. We can obtain a full 3D solution having prescribed magnetic field (Bz) obtained from

magnetograms, α, a and κ.

Our first reference model is built with the following inputs:

• LOS magnetogram at the lower boundary: In principle, any observed LOS magne-

togram can be used as the lower boundary, but to make the first reference model

smooth and relatively easy to compute, we extract the LOS magnetogram from Low

and Lou (1990)’s nonlinear force-free field (with parameters n = 1, m = 1, l = 0.3,

and Φ = 0.47) on z = 0 plane bounded by x, y ∈ [−1, 1].

• Parameters for the MHS model: α = −0.3, a = 0.5, and κ = 0.02.

• Background atmosphere: Ideal gas with ρ0 = 2.7 × 10−7g/cm3 on the photosphere

and the temperature T = 6000K/5500K/10000K at height h = 0Mm/0.5Mm/2Mm

(linear interpolation at points between the nodes). The mean molecular weight M = 1

and the gravitational acceleration g = 272.2m/s−2 over the active region.

• Computational box: −1.6Mm < x, y < 1.6Mm and 0Mm < z < 2Mm resolved with

80× 80× 50 grid points.

The magnetic fields and plasma distributions are shown in figure (1). In this test case the

physical quantities ρ,B for all six boundaries are specified. Moreover, the pressure scale

height (see equation (5)) in the 3D volume is also specified to close the MHS equations.

Comparison between the reference model and the extrapolation results will be made in the

entire volume. The MHD relaxation code implemented respectively by Zhu and by Miyoshi,
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Figure 1: Low’s analytical model. Left: Magnetic field lines with the LOS magnetogram at

the bottom. Middle: LOS integration of plasma pressure. Right: LOS integration of plasma

density.

the Grad-Rubin code implemented by Wheatland, the optimization code implemented by

Zhu and Wiegelmann will be applied to the model.

2.2 Reference model 2: Cheung’s RMHD simulation

Cheung et al. (2019) carried out an radiative magnetohydrodynamic (RMHD) simulation

of a solar flare along with a coronal mass ejection. The simulation includes 3D radiative

transfer in the convection zone and photosphere, along with optically thin radiation and

field-aligned heat conduction in the corona, which mimics a realistic environment on the

Sun.

We chose a snapshot that is eight minutes after flare peak as another reference model for the

test. The photospheric magnetogram is extracted at the same geometrical height at which

the average optical depth is equal to unity. Thus the reference model spans ±49.2 (±24.6)

Mm in x (y) axis and spans from photosphere (0 Mm) to 41.6 Mm above in z axis. Although

the system is still somewhat dynamic at the moment of the reference snapshot, inertial

term is relatively weak at any height compared with either plasma pressure or magnetic

pressure (see figure 2 in Zhu and Wiegelmann, 2022). The reference model is resolved by

512× 256× 652 grid points with grid spacing 192 km in the horizontal directions and 64 km

in the vertical.
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Figure 2: Cheung’s RMHD model.

The magnetic field lines are shown in figure (2). In this test case only the vector magnetic

field B in the photosphere is specified. As mentioned in the first section, the MHS equations

(1) - (3) with the bottom vector magnetogram is not a well posed problem. Therefore, we

have to make more assumptions, not only on the boundaries but also in the computational

domain. Since each of our methods has its own way to deal with technical problems, I

will not, of course, impose more restrictions here. Please try your best to implement your

algorithms with reasonable assumptions to get the best results. If you are going to use an

atmosphere model as the initial condition or to constrain your initial condition, I would

suggest the background atmosphere of the 1st reference model with an extension to corona:

T = 500, 000K/1, 000, 000K/1, 500, 000K at height h = 2.2Mm/5Mm/100Mm (linear in-

terpolation at points between the nodes).

Comparison between the reference model and the extrapolation results will be made in

the emerging spot within [280:490,60:240,1:156] (green box in figure 2). The Linear MHS

solution established by Neukirch, the MHD relaxation code implemented respectively by Zhu

and by Miyoshi, the Grad-Rubin code implemented by Wheatland, and the optimization

code implemented by Zhu and Wiegelmann will be applied to the reference model 2 for

comparison.

3 Metrics for Comparison

The following metrics which were frequently used for quantitative comparison between the

reference model and extrapolation results will be used in our comparison:
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• Vector Correlation metric

Cvec =
∑
i

Bi · bi/

(∑
i

|Bi|2
∑
i

|bi|2
) 1

2

, (10)

• Cauchy-Schwarz metric

CCS =
1

N

∑
i

Bi · bi

|Bi||bi|
, (11)

• Normalized Vector Error metric

EN =
∑
i

|Bi − bi|/
∑
i

|Bi|, (12)

• Mean Vector Error metric

EM =
1

N

∑
i

|Bi − bi|
|Bi|

, (13)

• Magnetic Energy metric

ϵ =
b2

B2
, (14)

where b and B are the magnetic field of the reconstruction solution and the reference

model, respectively, N is the number of grid points in the computation box.

• Field Line Divergence (FLD) metric: Tracing field lines from a random point on the

bottom boundary in both reference model and extrapolation. If both field lines end

again on the bottom boundary, a score pi can be given to this point with the distance

between the two endpoints divided by the length of the field line in the reference model.

Then a single score can be assigned by the fraction of the area in which pis are less

than 10%. An alternative score can be given by the fraction of flux.

• Linear Pearson correlation coefficient for the line-of-sight integration (with respect to

the z axis) of both pressure and density.

4 Tasks for each member

We will have our first meeting in the middle of 2023. The main topic of the first meeting is

to discuss results of each model. Tasks for each member before the meeting are in the bold

fonts in the following table.
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Name Task

Bai, Xianyong
• DKIST observation application

• Magnetic field inversion

Chifu, Iulia

• DKIST observation application

• 3D coronal loop reconstruction

• NLFFF modelling

Gafeira, Ricardo
• Neural network

• Magnetic field inversion

Miyoshi, Takahiro • MHS modeling by MHD relaxation method for refer-

ence model 1 and 2

Neukirch, Thomas • Linear MHS modeling for reference model 2

Wheatland, Mike • MHS modeling by Grad-Rubin method for reference

model 1 and 2

Wiegelmann, Thomas • NLFFF, LMHS, and MHS modeling

Zhao, Jie
• COSPAR-2024 event proposition

• Magnetic field modeling of the solar active region

Zhu, Xiaoshuai

• DKIST observation application

• COSPAR-2024 event proposition

• MHS modeling by both optimization and MHD re-

laxation method for reference model 1 and 2

We might need additional runs of our codes after discussions during the first meeting. Our

first paper will be on the comparison of the the MHS solutions and the reference solutions.

5 About the data

You may download data named MHS test data.tar.gz for tests from here. Extract it with

command:

tar -xzvf MHS test data.tar.gz

After that, you will acquire four .sav files with two *3D data.sav are 3D reference models

and the other two *boundary data.sav contain all known conditions for modelings.
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