

Magnetic heating of the active chromosphere

João M. da Silva Santos

National Solar Observatory, Boulder, CO, USA

jdasilvasantos@nso.edu

ISSI team meeting, October 2022

"(...) dissipation of energy carried by waves generated in the convection zone is the most likely source of the energy heating the chromosphere."

reconnection?

shocks?

reconnection?

MHD waves?

reconnection

shocks?

Alfvén turbulence?

- Joule heating (w/ ambipolar diffusion?) MHD waves?

Background: IRIS SJI Mg II k

High-resolution proxies for chromospheric heating

SST/CRISP and CHROMIS observations

Leenaarts+ (2018)

Anan+ (2021)

Electric currents in the chromosphere are poorly understood

He I 10830, VTT observations

Solanki+ (2003)

Ca II 8542, Dunn/IBIS observations

Louis+ (2021)

Heating in chromospheric current sheets: UV-bursts

Hansteen+ (2019)

see also, e.g., Nobrega-Siverio+ (2017); Priest+ (2018); Peter+ (2019)

Joint observations with ALMA and the 1-m SST in 2019

da Silva Santos+ (2020, 2022a, 2022b)

Cycle 6 April 13, 2019

14:15 17:50 UT **IRIS:** NUV (e.g. Mg II h and k), FUV (e.g. Si IV, C II) passbands, dense raster Hinode/SOT/SP and EIS: Fe I 6301 magnetograms and EUV lines ALMA: Band 6 (1.25 mm continuum), baselines up to 700 m – 0.6 arcsec, mosaic

18:50 UT

1m- SST/CRISP: Ca II 8542 and Fe I 6173 (polarimetry), single scan

ALMA: Band 3 (3 mm continuum), baselines up to 700 m – 1.2 arcsec, 2sec cadence

Flux emergence and chromospheric heating

J. M. da Silva Santos, S. Danilovic, J. Leenaarts, J. de la Cruz Rodríguez, X. Zhu, S. White, G. Vissers & M. Rempel (2022, A&A, 661, A59)

SST/CRISP observations

Milne-Eddington inversions

Non-LTE inversions of SST/CRISP+ALMA 3 mm data

• Radiative losses (Ca II, Mg II, HI) within the contribution function of the 3 mm continuum (upper chromosphere $T \sim 10,000$ K)

 $Q_l \sim h\nu_0(n_i R_{ij} - n_j R_{ji})$

STiC code

Magnetohydrostatic extrapolation based on the SST+HMI (composite) vector magnetogram

Heyvaerts+ (1977)

see also, e.g., Galsgaard+ (2007) Cheung & Isobe (2014) Archontis & Hansteen (2014) Ortiz+ (2016)

da Silva Santos+ (2022)

see e.g., Zhu & Wiegelmann (2018); Zhu+ (2020) on the extrapolation algorithm

3D MURaM simulation of flux emergence \rightarrow

 λ 8542 TLP

 λ 8542 TCP

selected snapshot for analysis

- ^A Vertical slices of the MURaM atmosphere
- ^B 3 mm brightness temperature
- ^c Total heating rates within the 3 mm formation range (**capped**)
- ^D Chromospheric radiative losses within the 3 mm formation range

e (**capped**) mation range

IRIS / Hinode / ALMA observations of the AR hours earlier

da Silva Santos+ (2022, Front. Ast. Space Sci.)

with coobservations from **IRIS** and Hinode/SP /EIS + EOVSA(?) (but not SST or other)

the

April 13, 2019

Band 6 (1.25 mm continuum) ~ 1.5 min cadence ~ 2h total time **0.6 arcsec resolution** (px size 0.3)

Conclusions

- Persistent, enhanced chromospheric temperatures are associated with the interaction of **low-lying magnetic loops** and the canopy in an AR.
- Radiative cooling rates (upper chromosphere ~10,000 K) up to ~5 kW m⁻² – a factor >2 higher than in the surroundings.
- The main observables are reproduced by **MURaM simulation**.

(freely available) inversion codes

https://github.com/jaimedelacruz/stic https://github.com/jaimedelacruz/pyMilne

SST / CHROMIS NOAA 12723 – potential candidate for multi height magnetic field analysis

Ca II K

<u>da Silva Santos, J. M. 2020, PhD Thesis</u>

Comparing the chromospheric magnetic field inferred (1) directly from the SST/CRISP Ca II spectra and (2) from extrapolations of a photospheric magnetogram (Fe I 6173)

Gregal Vissers, S. Danilovic, X. Zhu, J. Leenaarts J., de la Cruz Rodríguez, C. J. Díaz Baso, J. M. da Silva Santos, and T. Wiegelmann A&A, 662, A88 (2022)

What does this imply for the corona? Can we improve the extrapolation using multiple line constraints? What can we learn about chrom. heating?

