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Radiative energy losses [ kW m-2 ]
compiled by Withbroe & Noyes (1977)

Lower 

chromosphere

Upper 

chromosphere

Total

QS 2 0.3 4

AR ≥10 2 20

Heating mechanisms
compiled by Carlsson, De Pontieu & Hansteen (2019)

QS acoustic shocks, reconnection, Joule heating,

ion-neutral effects

AR magnetoacoustic shocks, reconnection, Joule heating, 

Alfvén turbulence, MHD waves, ion-neutral effects 

Heating mechanisms
compiled by Withbroe and Noyes (1977)

QS acoustic shocks, reconnection, Joule heating

AR MHD waves, reconnection, Joule heating

other: mass flows and thermal conduction from above

“(…) dissipation of energy carried by waves generated in the convection 

zone is the most likely source of the energy heating the chromosphere.”
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High-resolution proxies for chromospheric heating

Leenaarts+ (2018)

integrated Ca II K intensity

SST/CRISP and CHROMIS observations

Anan+ (2021)

GREGOR/GRIS and IRIS observations



Solanki+ (2003)

Electric currents in the chromosphere are poorly understood

He I 10830, VTT observations

Louis+ (2021)

Ca II 8542, Dunn/IBIS observations



Hansteen+ (2019)

see also, e.g., Nobrega-Siverio+ (2017);

Priest+ (2018); Peter+ (2019)

2D cut of a 3D Bifrost simulation 

IRIS, AIA, SST 

observations
Vissers+ (2015)

Ellerman bombs Flaring active region fibrils

Heating in chromospheric current sheets: UV-bursts

UV-bursts

see also, e.g., Peter+(2014);

Guglielmino+(2018)

Tian+(2018)



Joint observations with ALMA and the 1-m SST in 2019

1m- SST/CRISP: Ca II 8542 and Fe I 6173 (polarimetry), single scan

ALMA: Band 3 (3 mm continuum), baselines up to 700 m – 1.2 arcsec, 2sec cadence

IRIS: NUV (e.g. Mg II h and k), FUV (e.g. Si IV, C II ) passbands, dense raster

Hinode/SOT/SP and EIS: Fe I 6301 magnetograms and EUV lines

ALMA: Band 6 (1.25 mm continuum), baselines up to 700 m – 0.6 arcsec, mosaic

18:50 UT

14:15 …

17:50 UT

NOAA 12738

All data are available upon request

Tb (B3) = 9000 K

da Silva Santos+ (2020, 2022a, 2022b)

April 13, 2019

Cycle 6



AIA 304 SST Ca II 8542

SST, TCP/TLP Fe I 6173

ALMA B3

SST , TLP Ca II 8542HMI Bln

Flux emergence and chromospheric heating 

SDO / AIA 171, 193, 211 composite

SDO / AIA 1700

J. M. da Silva Santos, S. Danilovic, J. Leenaarts, J. de la Cruz Rodríguez, X. Zhu, S. White, G. Vissers & M. Rempel (2022, A&A, 661, A59)

Tb (B3) = 9000 K

April 13, 2019

https://ui.adsabs.harvard.edu/abs/2022A%26A...661A..59D/abstract


SST/CRISP observations Milne-Eddington inversions

ALMA/B3 8000 K

(of the Fe I 6173 line)



Non-LTE inversions of SST/CRISP+ALMA 3 mm data

Radiative losses (Ca II, Mg II, HI) within the 

contribution function of the 3 mm continuum

(upper chromosphere T ~ 10,000 K)

example fits at different locations

chromosphere chromospherephotosphere photosphere

STiC code

𝑄𝑙 ∼ h𝜈0(𝑛𝑖𝑅𝑖𝑗 − 𝑛𝑗𝑅𝑗𝑖)



Magnetohydrostatic extrapolation based on the 

SST+HMI (composite) vector magnetogram

Heyvaerts+ (1977)

da Silva Santos+ (2022)

SST

HMI / SHARP

ALMA/B3 > 9000 K

see e.g., Zhu & Wiegelmann (2018); Zhu+ (2020) on the extrapolation algorithm

see also, e.g., Galsgaard+ (2007)

Cheung & Isobe (2014)

Archontis & Hansteen (2014)

Ortiz+ (2016)
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3D MURaM simulation of flux emergence

ALMA/B3 = 9000 K

selected snapshot for analysis
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A

A
Vertical slices of the MURaM atmosphere

B
3 mm brightness temperature

C
Total heating rates within the 3 mm formation range (capped)

D
Chromospheric radiative losses within the 3 mm formation range



IRIS / Hinode / ALMA observations of the AR hours earlier 

courtesy of Stephen White

da Silva Santos+ (2022, Front. Ast. Space Sci.)

Band 6 mosaic

with coobservations from IRIS 

and Hinode/SP /EIS + EOVSA(?) 
(but not SST or other)

Band 6 (1.25 mm continuum)

~ 1.5 min cadence

~ 2h total time

0.6 arcsec resolution (px size 0.3)
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• Persistent, enhanced chromospheric temperatures are 

associated with the interaction of low-lying magnetic loops

and the canopy in an AR.

• Radiative cooling rates (upper chromosphere ~10,000 K) up 

to ~5 kW m-2 — a factor >2 higher than in the surroundings. 

• The main observables are reproduced by MURaM simulation.

CRISP Ca II 8542

TCP

TLP

Conclusions

intensity

https://github.com/jaimedelacruz/stic

(freely available) inversion codes

https://github.com/jaimedelacruz/pyMilne



da Silva Santos, J. M. 2020, PhD Thesis

SST / CHROMIS
NOAA 12723 – potential 

candidate for multi height 

magnetic field analysis

WB 3934 Ca II K

http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1505236&dswid=-5406


Gregal Vissers, S. Danilovic, X. Zhu, J. Leenaarts J., de la Cruz Rodríguez, C. J. Díaz Baso, J. M. da Silva Santos, and T. Wiegelmann

A&A, 662, A88 (2022)

WFA [kG]

Comparing the chromospheric magnetic field inferred (1) directly from the SST/CRISP 

Ca II spectra and (2) from extrapolations of a photospheric magnetogram (Fe I 6173)

What does this imply for the corona? Can we improve the extrapolation using multiple line constraints? What can we learn about chrom. heating?

(1)

(2)

The Na I 5896 line was not used in this paper


