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Summary

Sunspots are the hallmark of solar activity. High resolution spectropolarimetry is rapidly progressing toward a better
physical understanding of small-scale structures in sunspot penumbra and umbra. However, our understanding of the
magnetic structure of sunspots in the chromosphere and corona is lagging behind. In our modeling of magnetic fields
in the corona, we still rely on various extrapolation methods, which do not include a realistic atmosphere nor are they
constrained by the observations.

Our ISSI team will explore different approaches to address this deficiency. Nonlinear force-free field reconstructions
that employ routinely available full-disk photospheric vector magnetograms as bottom boundary conditions represent
the state-of-the-art of coronal magnetic field modeling. Such reconstructions, however, are not unique and suffer from
an inconsistency between a force-free coronal magnetic field and non-force-free photospheric boundary condition,
from which the coronal reconstruction is performed.

Realistic time-dependent MHD models could help greatly, but are not expected to be rou-tinely available any time
soon. The use of chromospheric vector magnetograms can aid the coronal part of the magnetic model, but does not
help to build the magnetic model between the photospheric and chromospheric levels.

Our ISSI team will use a combination of state-of-the-art modeling with existing and near future high-resolution
observations (e.g. from new DKI 4-meter aperture Solar Telescope, DKIST) to evaluate existing approaches in modeling
the chromospheric and coronal magnetic fields and identify key failure points in such modeling. The goal is to integrate
newly available chromospheric and/or coronal magnetic field data with the vector photospheric magnetograms to
improve the magnetic field reconstructions.

We will select several well-observed active regions, which have both chromospheric and coronal magnetic field
diagnostics from optical and radio spectropolarimetry, construct their 3D coronal magnetic field models using various
complementary techniques, and validate these models using the observations. As a result of this effort we will create
better constrained models of the coronal magnetic field, available for public use in the form of data cubes, codes, and
scientific publications.
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GX Simulator: user-friendly tool for 3D modeling
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Automated Model Production Pipeline (AMPP)

Selection of time, position and spatial resolution of
the model

Initial potential field extrapolation
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Automatic download of SDO HMI/AIA data
closest to the time requested
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Creation of an empty-box structure containing a
WCS-compatible index, LOS Bz, Ic, and the
requested AIA UV/EUV reference maps

Computation of the length and averaged magnetic
field for all voxels crossed by closed magnetic field
lines, to be used by GX Simulator to assign
parametrized differential emission measure and
density and temperature distribution models of the
corona
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WCS coordinate transformation of HMI vector data to
create the base of the subsequent extrapolations
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Adding non-LTE density and temperature
distribution models of the chromosphere




Interface of Automated Model Production Pipeline
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Model and synthetic images
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Fine tuning thern
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Conceptual view

Zeeman chromospheric B probing
at various heights

Microwave/mm chromospheric B,
probing at various heights (ALMA)

Radio probing of B at various
heights (EOVSA, SRH)
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Radio Diagnostics of B

Radiation Process Observables Diagnostics
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Coronal B Field: Measurements vs Models
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